
Logistics for Emergency Medical Service systems

December 16, 2016

Abstract

Emergency Medical Service (EMS) systems worldwide are complex systems, characterised by significant

variation in service providers, care pathways, patient case-mix and quality care indicators. Analysing and

improving them is therefore challenging. Since EMS systems differ between countries, it is difficult to provide

generic rules and approaches for EMS planning. Nevertheless, the common goal for all service providers is to

offer medical assistance to patients with serious injuries or illnesses as quickly as possible. This paper presents

an overview of logistical problems arising for EMS providers, demonstrating how some of these problems are

related and intertwined. For each individual planning problem, a description as well as a concise literature

overview of solution approaches considered is given. A summary table classifies the literature according to

the problems addressed and connects it to the proposed taxonomy.
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Introduction

Helping and rescuing patients in case of an emergency is an important and urgent service in every country

in the world. Since ambulance response times can be a crucial factor in patient survival, ambulances are

expected to arrive at the scene of reported incidents as quickly as possible, raising important questions of

where ambulances should be located and how many should be deployed. As Emergency Medical Service (EMS)

systems differ between countries, there might be different answers to these questions. Operational Research

(OR) literature offers many different models and approaches to tackle the ambulance location problem. As

most EMS systems can be grouped into one of two main systems, the Anglo-American and the Franco-German

system (Dick, 2003), the approaches should be applicable to more countries than they were initially developed

for, but maybe not to all. In addition to the ambulance location problem, several other planning problems and

logistical tasks exist for EMS providers, such as shift scheduling for dispatchers and ambulance crews or the

routing of patient transports. Besides a couple of reviews specifically on ambulance location and relocation,

complete overviews over all problems including a classification of approaches into planning levels are still sparse.

Aringhieri et al (2017) present a review of planning problems based on the Emergency Care Pathway, following

the patient’s trajectory through the system. This paper, on the other hand, classifies papers according to the

planning problem they address and solution approach followed. It focuses on the dependencies between planning

problems and planning levels and discusses the different organisational objectives.

Before presenting a derived taxonomy for EMS planning problems, we first describe the UK, Dutch and

German EMS systems in detail, in order to highlight some of the main similarities and differences between

European EMS systems. Such details become important when discussing specific forecasting and scheduling

problems in the sections that follow.
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Short overview of EMS systems

Throughout the world, two main types of EMS systems exist, namely the Anglo-American system and Franco-

German system (c.f. Dick (2003)). The main difference lies in the definition of staff. Whilst paramedics employed

in the Anglo-American system are able to administer almost any treatment necessary, the German-Austrian

system includes so-called emergency doctors. They are called in severe cases and are the only ones allowed to

deliver certain kinds of treatments. Moreover, each country has its own set of laws and specific regulations. The

main differences include the payment structure, response time targets and being either organised by private

organisations or public institutions. An overview over the systems can be found in Dick (2003), for example.

In this paper, we will mainly consider three different countries which are the UK, Germany and the Nether-

lands when giving examples for the planning problems. Therefore, the next sections give short introductions

into their EMS systems. Hoogeveen (2010) presents the results of a survey among ten European countries

regarding the structure of ambulance care. In the description of the different systems, we give the terminology

used for that particular system, so as to make it easy to find references. After overviewing the three systems in

succession, we introduce a typical EMS system and the terminology for the remainder of this paper.

UK system

EMS in the UK provide free urgent care services to patients suffering from illnesses ranging from acute ailments

to minor injuries 24 hours a day, 7 days a week. There are 14 ambulance services within the UK (1 in Wales,

1 in Scotland, 1 in Northern Ireland and 11 in England that are separately managed by regional Clinical

Commissioning Groups). Hence it is unsurprising that there are small discrepancies in the way that they

operate (Lightfoot Solutions, 2009, NHS Choices, 2014, NHS Scotland, 2014, Workforce et al, 2014). Over

and above the basic requirement to respond to emergency calls, each ambulance service is also responsible for

responding to urgent admission requests from doctors and transporting patients requiring high dependency care

between hospitals.

Ambulance crews are highly skilled professionals who are able to stabilise patients and administer medication

during transportation. The emergency ambulances (EAs) used to transport patients are themselves state of

the art, furnished with a wide range of technical apparatus and typically manned by two crew members - at

least one of whom must be a fully trained paramedic. In addition to EAs, Rapid Response Vehicles (RRVs), air

ambulances and emergency services co-responder (e.g Fire and Rescue Service) vehicles may also be dispatched

to select incidents. RRVs are small vehicles which allow first responders to reach the scene of serious incidents

quickly to assess the condition of the patient and offer immediate medical treatment. In the case of immediately

life-threatening calls, RRVs should be automatically backed up by the nearest available double-staffed EA, but

for all other calls, RRV clinicians must advise the type of back-up required as soon as they have made a primary

assessment. Most ambulance trusts also encompass non-emergency patient transport service (PTS) vehicles to

transport non-urgent scheduled patients to and from medical facilities. However, non-urgent patient transport

work is becoming increasingly sub-contracted to private companies, voluntary organisations and community

resource teams.

Patients will always be taken to hospital if there is a medical need, but several recent initiatives have been

launched that support alternatives to conveyance wherever possible. The schemes have led to a successful

reduction in conveyance rates in England from 98% to 58% over a 12-year period, which has helped to partially

offset the rise in emergency calls (O’Cathain et al, 2015, Snooks et al, 2013).

Every time an ambulance service receives a call, emergency medical dispatchers use sophisticated software

to prioritise it into one of the following categories of urgency:
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• Immediately life-threatening: such calls should receive an emergency response within 8 minutes. The

target compliance rate for this target varies locally, for example:

– In England, 75% of critical ‘Category A Red 1 calls’ where patients are not breathing or do not have

a pulse, should be responded to within 8 minutes. An extra 60 seconds is allowed for still serious, but

less immediately time critical ‘Category A Red 2’ incidents e.g. strokes or fits. A secondary target

also applies to ensure that 95% of all life-threatening calls are responded to within 19 minutes;

– The monthly average performance targets for all life-threatening calls in Wales, Northern Ireland and

Scotland are 65%, 72.5% and 75% respectively.

• All other calls: for conditions that are not life-threatening, response targets are set locally. A striking

decision has recently been made by NHS Wales to drop time-based targets for all but immediately life-

threatening calls - from October 2015, performance is instead being measured against clinical outcome

indicators and patient experience information.

Unless prudence suggests otherwise, common practice is to send the closest available ambulance. Whilst

ambulances are assigned to fixed ambulance stations, they are able to relocate to ‘hot-spots’ during the day,

and the excessively high demand for ambulances often means that ambulance drivers are commonly routed to

attend another incident directly from the hospital at which they previously handed over a patient for further

treatment.

German system

The German EMS system, as part of the German Emergency Health System (EHS), covers in general two main

tasks - emergency rescues and patient transports. Patient transports, in contrast to emergency rescues, involve

uncritical cases where medical attention is necessary while transporting the patient, for example, between

hospitals or back home after a treatment. Besides, a number of further services are usually offered, as, for

example, providing information on after-hour practices or on-duty pharmacies.

Each federal state in Germany - there are 16 in total - has its own EMS law organising the services within each

state and defining rules and regulations like the response time target. This target only applies for emergency

rescues and lies between 8 and 15 minutes. It is measured as the time between the call pick-up and the arrival

at scene in most of the cases and has usually to be met in 95% of the cases. Keeping this response time target

is, in general, the most important goal for the EMS planning in Germany.

Each federal state is again divided into a number of so-called EMS regions which are often urban or rural

(political) districts. Overall, there are more than 250 EMS regions in Germany with more than 2000 base

locations. The state of Baden-Württemberg, for example, is divided into 34 EMS regions. In some of the

federal states, EMS regions were combined to form fewer and larger regions.

Per EMS region, in general, one coordination center is installed. In many of the regions, the EMS system

is combined with the fire brigade. In some of the regions, the fire brigade is in charge of both, while in others

relief organizations like the German Red Cross or the Workers’ Samaritan Federation Germany are organising

the services.

For EMS, mainly three different vehicles are used - two kinds of ambulances for emergency rescues and

patient transports with different levels of equipment and a special vehicle for the emergency doctors. Sometimes,

multifunctional ambulances are used for both service types. For the ambulance staff two different levels exist.

A basic training leads to becoming an Emergency Medical Technician (EMT). With additional education, a

position basically comparable to a paramedic can be reached with the main difference that by law an emergency
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doctor is needed for special types of treatments. An ambulance is always equipped by two staff members, for an

emergency rescue at least one of the two is a paramedic whereas for a transport it can also be 2 EMTs. Usually,

an emergency doctor works at a hospital or a private practice while being on duty as emergency doctor. In case

of an emergency, he is either picked up by the ambulance if it is also stationed at the hospital or he is driving

to the scene in a separate vehicle. In the latter case, often someone else is driving the car so that if necessary

the emergency doctor can accompany the patient in the ambulance on the way to the hospital. This system is

called “Rendez-vous-system” as ambulance staff and emergency doctor are meeting at the scene. Sometimes,

the emergency doctor is called right away and sometimes he is requested by the ambulance staff when they

arrive at the scene. In Baden-Württemberg, the response time target not only applies for the ambulances but

also for the emergency doctors.

In addition to these vehicles, helicopters and aircraft are used in Germany for emergency rescues as well as

for intensive care transports if needed, but only during daytime.

In general, one ambulance can only serve one patient at a time. Ambulances are typically stationed at

hospitals or additional base locations throughout the EMS region. In the case of an emergency, the closest

ambulance is usually dispatched. However, since not many ambulances have GPS, it is not always clear which

ambulance this is.

The EMS provider that fulfils the emergency service only gets paid if the patient is transported from the

scene to a hospital. The pure treatment at the scene is not sufficient.

Dutch system

As in most systems, the ambulance providers in the Netherlands cover two main types of calls - emergency

calls and patient transports. However, unlike the UK and German systems, patient transports may involve

patients in critical conditions. Some ambulance providers further assist in acute home care during the nights.

In total, 725 ambulances were in used in the Netherlands in 2012. These were divided over 207 base stations

(Ambulancezorg Nederland, 2013). In the Netherlands, two types of emergency calls are distinguished: A1

and A2 calls. A1 calls are the most urgent, life-threatening calls. In this case, an ambulance is required to be

at the scene within 15 minutes in 95% of the cases. For urgent, but not life-threatening calls, an ambulance

should be there within 30 minutes. Within the patient transports, which are called B calls, sometimes a further

two categories are distinguished: B1 and B2. Here, B1 calls involve the transportation of patients in critical

conditions, for which an fully equipped ambulance is required. For B2 calls, less equipped ambulances suffices.

In 2012, 1.1 million calls were served in the Netherlands, of which 500,000 were A1, 275,000 were A2, and

325,000 were patient transports.

The ambulance care in the Netherlands is divided into 24 more or less independently operating regions

(RAVs), each of which is operated by a single organisation. The Dutch institute of public health and the

environment (RIVM) computes the required capacity for each of the RAVs. These computations form the basis

for the budgets of the RAVs. Although the budget is based on a number of ambulances and a number of bases,

the RAVs are free to choose how to spend their budget. Every year, the branch organisation of ambulance care

in the Netherlands (AZN) publishes the performance of the different regions. The AZN further organizes the

training for the ambulance crew.

Originally, every ambulance region had his own call center from which calls were taken and ambulances

were dispatched. However, in the past years, multiple call centers have merged in order to improve efficiency.

Currently, there are 19 call centers in the Netherlands. This will further reduce to 10 in the coming years.

Most call centers distinguish call takers and dispatchers. Call takers are responsible for triage, while dispatchers
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instruct the ambulance crew. In principle, only the call taker requires medical training. However, in most call

centers, call takers and dispatchers switch roles during the day, in which case both call takers and dispatchers

are required to have a medical education.

In the Netherlands, all emergency calls that require transportation of a patient are served by an Advanced

Life Support (ALS) ambulance. These ambulances are fully equipped and staffed by a paramedic and a driver.

The paramedic is required to have completed a full nursing education and at least one follow-up studies in acute

care. Additionally, specific training is given by the AZN at the moment of hiring. The driver, on the other

hand, does not require a medical background. The driver is there to assist the paramedic at the scene, for

this the driver gets training in providing medical assistance. Furthermore, training in driving an ambulance is

required.

In patient transports, called B calls, two categories are distinguished depending on the medical conditions

of the patient. In case life-threatening situations might occur during transport, an ALS ambulance is required.

These calls are called B1. All other transports, B2 calls, might also be executed a Basic Life Support (BLS)

ambulance. This is a lower equipped ambulance staffed with two regular nurses.

In particular cases, other vehicles might be used. For patients that need transportation between the intensive

care units of two hospitals, Mobile Intensive Care Units (MICU) are used. Some regions additionally use rapid

responders. This is a single paramedic that can provide care at the scene, but cannot transfer a patient to a

hospital. The paramedic uses, for example, a car, motorbike, or even a normal bike to get to the scene.

As in Germany and the UK, an ambulance can serve only one patient at a time. For both A1 and A2 calls,

regular practice is to always send the closest available ambulance. Since all ambulances are equipped with GPS,

call center software shows the closest available ambulance to the dispatcher. If necessary, ambulance relocations

are performed in order to maintain good coverage throughout the region. Often, these relocation decisions are

based on so-called look-up tables. Some regions have specific locations were they can temporarily locate an

ambulance as part of a relocation, for example, in the middle between two regular base stations.

A typical EMS system

Based on the description of the three aforementioned systems, we extract what we call a typical EMS system.

This allows us to define the terminology that we use in the remainder of this paper. In a typical EMS system,

the EMS provider is responsible for two main tasks: emergency calls and patient transports. These emergency

calls include emergency rescues in Germany and Category A calls in the UK and the Netherlands. Typically,

a response time target is set for these calls. Patient transport calls are classed as PTS calls in the UK and B

calls in the Netherlands. In most systems, two types of emergency calls are distinguished: life-threatening calls

and urgent calls. A different target can be set for the two categories. For example, in the Netherlands, the

first category must be reached within 15 minutes, whereas the second has a target of 30 minutes. Note that

the target that is set by the regulator can significantly change the optimal system design. The rather stringent

target of 8 minutes in the UK asks for the use of a large fleet of rapid responders. On the other hand, given the

15 minute threshold in the Netherlands, a configuration with only very few rapid responders might be preferred.

We define three main types of ambulances: Advanced life support (ALS), Basic life support (BLS), and

Rapid responders (RR). ALS ambulances are fully equipped, staffed with at least one paramedic, and able to

respond to all types of calls. BLS ambulances are lower equipped and typically not staffed with a paramedic.

These ambulances are typically used for patient transports, although they could occasionally be dispatched to

non life-threatening calls. Note that in the Dutch and German systems, BLS ambulance are strictly limited

to serve patient transports. Rapid responders are defined as fully qualified paramedics without the ability of
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transporting patients to a hospital. For coverage, a response of a RR within the target response time would

suffice. However, in case the patient requires transportation, an additional ALS ambulance is required.

Although there are small differences between countries, the structure of the response process is similar.

However, often different terminology is used, which can result in misunderstanding. To avoid this confusion,

we introduce a typical response process with the terminology that we use in this paper. When a call arrives

at the dispatch center, it takes some time for the dispatcher to assess the urgency of the call and assign an

ambulance. This process is called triage and dispatch. The time between the assignment of an ambulance and

the moment it starts driving is called the chute time. Together triage and dispatch, and chute time accumulate

to the pre-trip delay. Adding the travel time to the pre-trip delay, gives us the response time, which is the main

performance measure for EMS providers. In some countries, the definition of response time is slightly different.

In England, for example, the clock starts ticking up to 60 seconds later for serious but less immediately time

critical incidents, than for cases where patients are not breathing. After spending some time on the scene with

the patient, the patient might require transport to a hospital. In that case, the ambulance becomes idle after

dropping off the patient at the hospital. In many countries, congested Emergency Departments (EDs) result

in increasing turnaround times (the time taken for ambulance crew to handover the patient and restock the

vehicle so it is ready to attend another call), which can have an enormous impact on the performance of EMS

systems (Channouf et al, 2007). Whenever an ambulances finishes a call, it is available for new calls. If no new

calls are waiting, the ambulance returns to its base, or any other location where it waits for new calls. Figure

1 shows the different stages of the response process.
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Figure 1: Response process

Even though there can be significant differences between countries, or even between EMS regions, we give

some statistics to get insight in the duration of the components of the response time. In the Netherlands, the

average time for triage and dispatch for the 24 different regions ranges from 1:18 minutes up to 2:48 minutes,

with an average of 1:58 minutes. The average chute time is 0:58 minutes. This implies that the average pre-trip

delay is almost three minutes, which allows for a travel time of at most 12 minutes. The average response time

in 2013 was 9:36 minutes and in 92.6% of the cases an ambulance was available within the target response time

of 15 minutes. The target that is set by law to reach 95% of the life-threatening calls within 15 minutes has

recently been reached by 8 of the 24 EMS regions (Ambulancezorg Nederland, 2014).

Organisational objectives

For EMS planning, as for most logistical planning, two aspects are important: (1) the length of the scheduling

horizon and (2) the characteristics of the considered planning problem itself including the goal(s) when solving
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the problem as well as possible constraints. In this section, we first look at the performance evaluation of EMS

systems. Often a time-related performance measure is considered as the objective, which can result in undesired

incentives. We distinguish the real objectives for EMS planning and the performance measures that are used

to assess the performance. This often happens by means of simulation.

In addition, we present the different planning levels that are used to classify the time horizon a solution

should be obtained for. For each planning level, we give exemplary planning problems. The concrete planning

problems will be presented in the ‘Planning problems’ section.

EMS performance evaluation

Often, improving the quality is named as the main objective when the (re)planning of an EMS system is

considered in practice. The problem is that it is difficult to define the quality of an EMS system. While it is

already much more difficult to define the quality of a medical system than for many other areas, this is especially

true for emergency medicine, because of the extreme working conditions, the unexpected incidents and the often

difficult circumstances. In addition, quality from the patient’s, the health insurance’s or the ambulance team’s

perspective may differ significantly.

Even if a clear definition of quality could be provided, it is not always clear how the quality would be affected

by certain changes in system. Due to the complexity of EMS systems, simulation is often required to estimate

the performance in the new situation. We will first describe different definitions of quality of EMS systems.

Then, we will discuss different studies that use simulation to estimate the impact of changes in the system.

Quality definitions

A classical quality definition in healthcare is proposed by Donabedian (1980). According to his interpretation,

there are three subcategories for a quality definition in healthcare: structure, process and outcome quality.

Using this definition, quality can be defined as the degree of fulfilment of these characteristics. It can be

said that the outcome quality (e.g., legal regulations) influences the process quality (e.g., handling of calls

or transports, also response time). The process quality then determines the outcome quality (e.g., survival

rate, patients’ satisfaction, cost-effectiveness). For most countries, in practice as well as in most of the OR

approaches, the process quality (i.e., response time) is used as the objective for planning problems and to

measure the performance of the EMS system while also considering the costs. Some mathematical approaches

exist that take the survival rate into account, but it might also be appropriate to use the general improvement

of the patient’s health status as the main quality measure to include all patients in the model and not only the

ones in immediate life-threatening conditions. This seems reasonable at first sight, as this is of main interest

for the patient. In general, this should also be the main goal for the EMS provider (while keeping the cost

at a reasonable level) and additionally for the insurance companies and social security as they would have to

pay for long-term care in case a patient does not fully recover. It would not be fair to only take the patient’s

health status when arriving at the hospital or at the end of treatment into account, as the medical condition of

the patient at the moment the ambulance is called highly influences the outcome. Scores like the NACA-Score

(Schlechtriemen et al, 2005a,b) that is used in many of the German EMS regions express the health status of

a patient as a set of integer values. They are often measured when the ambulance arrives at the scene, when

the patient arrives at the hospital and if needed, during later stages of the recovering process. Unfortunately,

these scores are very difficult to use in order to measure the quality of an emergency service. Consequently, the

current practice of measuring performance by implicit measures as response times might be necessary. Future

research might focus on how to incorporate the different quality types into an objective that maximizes the
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overall performance for all participants.

With the aim of identifying common components of European EMS systems the European Emergency Data

(EED) Project (1997-2002) was funded by the European Community under the Program on Health Monitoring

within the Framework of Action in the Field of Public Health. The report of the project was published in Krafft

et al (2006). The primary goal of this project was to create a common framework for monitoring and assessing

EMS systems throughout Europe as an integrated part of a health monitoring strategy. Participants were

representatives from Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Norway, Portugal,

Slovenia, Spain, Sweden and the United Kingdom. The project team simultaneously sought to develop a

comprehensive list of indicators based on the routine collection of EMS data that would enable the monitoring

and evaluation of the respective activities of the member states in the area of pre-hospital emergency care, in

addition to developing crucial indicators from evidence-based data to allow further comparisons among different

member states. Five key indicators were ultimately recommended for monitoring and evaluating the pre-hospital

emergency care of the EU countries. These five key indicators are: (1) unit hours (ALS + BLS) p. a. / 100 000

inhabitants, (2) response time (% within 480 sec) for highest priority p. a., (3) rate of highest priority responses

p. a. / 100 000 inhabitants, (4) rate of First Hour Quintet incidences p. a. / 100 000 inhabitants and (5) rate

of ALS interventions p. a. / 100 000 inhabitants (Fischer et al, 2011).

The unit hours (1) measures the availability of organised EMS resources (ALS and BLS) to the population.

Here, one unit hour means a fully equipped response unit available for a call for 1 hour. The response time

for highest priority response (2) measures the time until pre-hospital emergency care starts for patients who

are presumed to have a life-threatening condition. It is measured by the percentage of patients that received

first treatment within 480 seconds. The rate of highest priority response per 100,000 inhabitants (3) indicates

the utilisation and demand of an EMS system. It counts the number of responses for which an EMS unit is

dispatched to a perceived life-threatening emergency per year. The rate of First Hour Quintet incidents p. a. /

100,000 inhabitants (4) indicates the EMS demand for patients in critical conditions. The First Hour Quintet

includes the five conditions cardiac arrest, severe respiratory failure, severe trauma, stroke and chest pain. For

these conditions EMS can have a significant impact on the outcome as time is crucial and therefore, treatment

needs to start as soon as possible (best chances for a patient to recover are within the first hour). Finally, the

rate of ALS interventions p. a. / 100,000 inhabitants (5) measures the level of care provided by the organised

EMS system. The number of ALS interventions such as drug application, infusion, tracheal intubation and

assisted ventilation are counted for this indicator.

So overall the five indicators designed to monitor and evaluate the quality of pre-hospital emergency care

across Europe are are (1) availability, (2) reliable access, (3) demand/workload, (4) rate of critical conditions

and (5) level of care. Not only are these metrics useful for benchmarking purposes, but since EMS planners seek

to implement strategies that enable them to perform well against these metrics, they also significantly influence

planning decisions. It is therefore important for all countries to share best practice internationally and seek to

continually improve EMS provision within a European framework.

Performance estimation

For EMS planning it is not only important to determine the current or past quality of the EMS system, but

also to compute the expected service quality based on the current status and determined changes in order to

prove the practicability or uncover the need for (additional) improvements. A typical way of determining the

expected service quality is by simulation. The simulation can be used to provide estimates of the proportion of

patients that can be reached within pre-defined response times targets, the average response times, the coverage
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within a standard time T or the vehicle utilisation rates.

For the use of simulation it is crucial to have a realistic representation of the EMS system. For example,

travel times should be incorporated in a realistic way. For some regions, Euclidean or Manhattan distances

might yield good estimates, whereas for more irregular networks, other travel time models should be used.

Another important step is the generation of calls. As it can be difficult to estimate the demand, an alternative

could be to use trace-driven simulation where call streams are extracted from historical data. In this way, a

particular period of time can be evaluated with the new configuration. A final example of modelling choices

in simulation studies is the relocation policy. Since most EMS systems use at least some form of dynamic

ambulance management, it is important to incorporate this in the simulation. However, often it is not clear

under what circumstances relocations are executed. In order to realistically simulate the EMS system, some

relocation rule should be implemented.

As a consequence of the high level of detail that can be incorporated in simulation models, most simulation

studies focus on one specific ambulance region. The simulation tools are often not easily transferable to other

regions. Two notable exceptions are Henderson & Mason (2004) and Kergosien et al (2015). The first introduces

BartSim, a simulation tool that was originally developed for the region of Auckland, New Zealand. Later,

BartSim formed the basis for a more general simulation tool commercialized by Optima (now belonging to the

U.S. company Intermedix), which is the current market leader in EMS simulation software. Their software is

applied to EMS systems in many different countries. The simulation tool “Optima Predict” and it’s application

in Denmark is described in (Mason, 2013), for example. Kergosien et al (2015) have also proposed a generic

discrete event simulation-based analysis model that can be adapted to a wide range of EMS facilities. In

particular, it considers how to optimally serve emergency requests in addition to patient transports between

their homes and other medical facilities. Other papers where simulation is used to evaluate scenarios are

typically more region specific. The evaluated scenarios are proposed by decision makers (Aboueljinane et al,

2014), ILP models (Aringhieri et al, 2013, De La Mota et al, 2015), or heuristics (Jain & McLean, 2003).

Although the patient survival rate reflects the ability of an EMS system to meet its primary objective

of saving lives, very few simulation models have considered it until recently, due to the difficulty of linking

quantitative measure of survival rate to feasible changes in the rescue process. Inoue et al (2006) initially

proposed overcoming this difficulty by approximating the survival rate for severely injured patients using a

sigmoid curve and both Sacco et al (2005) and Wang et al (2012) have more recently considered estimating the

degradation rate, which is the declining probability of patient’s survival rate as he waits for appropriate care to

be administered, through the Delphi method. A simulation model for locating EMS by incorporating survival

functions for capturing multiple classes of heterogeneous patients has further been proposed by Knight et al

(2012), which aims to maximise the overall expected survival probability of multiple classes of patients with

different medical conditions with corresponding survival functions. The model is demonstrated using data from

the ambulance service in Wales, which is now beginning to issue reports on clinical based outcome performance

measures alongside response times.

Aboueljinane et al (2013) provides a more extensive overview of published papers on the topic of EMS

computer simulation.

Planning levels

In general, three different levels can be defined for EMS planning that differ in the time horizon the decision is

made for: (1) strategic, (2) tactical and (3) operational.
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Planning level Time horizon Planning problems
Strategic Yearly or longer Locating bases

Number of ambulances
Hiring crew

Long-term demand forecast
Tactical Monthly or weekly Locating ambulances

Staff scheduling (dispatchers, paramedics/EMTs)
Schedules for emergency doctors

Operational Daily Relocating ambulances
Assigning ambulances to calls

Daily forecast
Patient transport scheduling

Handling unavailability of crew and vehicles

Table 1: Planning problems at the different planning levels

Strategic level Decisions at the strategic level are usually made for several years or even decades. This

includes, for example, the construction of new buildings for a dispatching center or base stations. In addition,

also the design of the EMS regions within a country or a federal state is a strategic decision. Hiring crew can

also be seen as part of this phase as contracts are usually envisioned for several years.

Tactical level Decisions at the tactical level often hold for periods of one month up to one year. Typical

problems are the number of ambulances (per base and overall) and the crew scheduling and rostering, including

the number of dispatchers per shift. Often, the ambulance location problem is solved simultaneously for the

strategic and the tactical level.

Operational level Decisions at the operational level are made on a daily bases or even in real time. Examples

are the dynamic relocation of ambulances throughout the day which have to be determined in real time or the

assignment of crew to ambulances. Also the assignment of ambulances to emergency calls can be a problem at

that level, if dispatchers are allowed to deviate from the closest-idle dispatch policy. In addition, it is necessary

to deal with the unavailability of crew and / or vehicles on a daily bases.

Table 1 gives an overview over the EMS planning problems at the different levels that are discussed in this

paper.

EMS planning

EMS planning can be divided into three main parts: the general design of the services, the logistics to fulfil the

services and the analytics of the services. Figure 2 gives an overview over these parts. The design of the services

is mainly determined by existing laws and regulations and additionally by the decisions which services are offered

for the corresponding EMS region. In addition, general decisions have to be made, for example, whether the

closest ambulance must always be assigned. The logistics shall assure that the designed services can be offered

as intended while fulfilling existing laws and regulations. The main services are of course emergency rescue

and patient transport, but also the hotline of the dispatch center can be considered a service, especially if they

also inform about on-duty doctors/pharmacies or serve calls from in-house emergency call systems. Analytics

mainly includes two aspects: (1) forecasts for the logistical planning problems and (2) data analyses of historic

data to control the fulfilment of laws and regulations and the provided service levels. Statistics for last year’s

data are often used to check whether the laws and regulations were fulfilled. OR covers the logistics as well as
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EMS planning

Laws &
regulations

Report

Service design

Emergency rescue

Patient transports

Emergency hotline

...

Logistics

Ambulance + base
locations

Transport scheduling

Staff scheduling

...

Analytics

Statistics for
last year’s data

Demand forecast

Response time +
driving time forecast

...

Figure 2: EMS Planning - different involved disciplines, assigned planning problems and additional aspects
EMS planning includes Service design, Logistics and Analytics. The three disciplines themselves contain different
aspects. Service design as well as the logistics are mainly defined by laws and regulations. These should match
the (yearly) EMS report that is based on the statistics for last year’s data.

the analytics. Therefore, this will be the focus of this paper.

Figure 3 shows the interdependencies that exist between the planning problems arising for EMS systems in

a compact version, while Figure 4 does so in a more detailed manner. Both figures include the planning levels

as the vertical axis. On top one can find the strategic level, then the tactical and at the bottom the operational

level. Obviously, all the EMS planning problems need some form of data input. At the strategic and tactical

level corresponding forecasts are used to determine and model the demand for emergency and transport services.

At the operational level, the actual demand in real-time is the main input. Often, also operational forecasts

are necessary, for example the expected emergency demand for the upcoming hours is important when deciding

about ambulance relocations or possible return transports are included as dummy jobs for patient transport

planning. At all three levels ambulance planning problems exist.

Besides the relations between planning problems at different levels (e.g. the number, location and relocation

of ambulances) important dependencies exist between the number of ambulances and the need for staff. The

resulting shifts have an influence on tactical ambulance locations and relocations as well as on the planning of

patient transports.

Which methods need to be used for tackling the planning problems is often defined by the applied strate-

gies. At the strategic level, dispatching strategies and assignment strategies can influence the planning problems.
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Strategic
forecast

Tactical
forecast

Operational
forecast

Actual
demand

Workforce planning

Shift scheduling/roster

Strategic planning of
ambulances + bases

Tactical ambulance
planning

Operational ambulance
planning

Transport planning

Strategic
strategies

Operational
strategies

Forecast Planning problems Strategies

Workforce planning

Ambulance planning

Figure 3: Compact representation of dependencies between EMS planning problems

Here, dispatching strategies mainly include: (1) if the tasks of call taking and dispatching are fulfilled simulta-

neously by the same staff members or if there are divided and (2) if the call taker stays on the phone until the

ambulance arrives at the scene as both may influence the time that a staff member is occupied (when answering

a call). Here, strategies for the assignment of ambulances to calls is of primary interest. Examples are: (1) is

always the closest ambulance sent to an emergency or (2) is there a strict separation between ALS (emergency)

and BLS (patient transports) or do ALS also do patient transports if necessary - this also correlates with the

decision on different types of ambulances installed. Of course, ambulance assignment strategies applied at the

operational level should go along with the ones used at the strategic level to assure the desired performance. At

the operational level, relocation strategies determine (1) whether relocations are fulfilled at all (2) if relocations

are determined beforehand or in real-time (3) where and when relocations are applied (to a fixed set of locations;

only when an ambulance returns to a base or when also when an ambulance starts serving a call).
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Figure 5: Staff Scheduling (c.f. Vile et al (2016))

To end this section we want to give an example that shows the interdependencies for one specific problem

arising in EMS planning. For the probabilistic staffing problem, Vile et al (2016) presented the dependencies

of related planning problems as shown in Figure 5. It can be seen that when considering one specific problem

more detailed information about the included steps is of interest. For certain ambulance location problems, for

example, the predicted emergency demand is used to determine a so-called busy fraction for the ambulances.

In addition, the number of available ambulances needs to be known, either by solving a strategic problem

beforehand or by just taking the actually existing vehicles into account. Unfortunately, a figure including all

the possibilities and “side-problems” would not be helpful any more. Therefore these must be defined for the

specific planning problems whenever necessary, as addressed by Vile et al (2016), for example.

Planning problems

In this section, the different planning problems arising for emergency medical services are described in more

detail and emerging topics for future research are presented. For each problem, a literature review is given

showing the existing approaches and methods. The structure of this section follows Figure 3. First, we describe

the forecasting process, which corresponds to the left hand side of this figure. Second, the strategies from the

right hand side of the figure are discussed. Then, the middle part of the figure is discussed in three parts:

workforce planning, ambulance planning, and patient transports. Finally, Table 2 summarizes the content at

the end of this section.

Forecasting

While accurate forecasts are important for EMS logistics on all three planning levels, existing literature mainly

focuses on the strategic level. Several authors have extracted hourly, daily and monthly trends in ambulance

demand; and forecasted forward assuming that future demand will behave in a similar way (Brown et al,

2007, Kamentzky et al, 1982, Setzler et al, 2009). Whilst several regression models have been published that

successfully explain demand over large regions over long periods of time, they are only useful for strategic

planning and budgeting. In order to provide real-time decision support for dynamic ambulance deployment and

hourly operational deployment plans, attention has only more recently shifted to short-term forecasts. These

models suggest that factors such as the weather and the total volume of calls in the previous day can significantly

improve the 1- to 7-day forecasts of EMS demand (Channouf et al, 2007, Matteson et al, 2011, Wong & Lai,

2014).

Mainly two areas are distinguished in literature, demand forecast and workload / service time forecast. We

have structured this section accordingly. Demand forecasts on the strategic and tactical level are the main input

to locate bases and determine the number of necessary ambulances. On the operational level demand forecasts
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are essential for efficient relocations and assignments of ambulances. The other type of forecast considers the

workload and service times including driving times. For those forecasts, accuracy on the operational level is

important in order to determine the expected availability of an ambulance, while predictions on the strategic

and tactical level are usually more basic.

Demand forecasting

In order to develop effective EMS deployment strategies at the strategic and tactical level, it is essential to

first assimilate accurate predictions of demand per time period (e.g. hourly or at the required granularity); yet

despite the potential of advanced statistical models to offer accurate demand forecasts, most ambulance service

providers still use rudimentary prediction methods when developing strategic plans. Typically, these methods

involve dividing the week into 168 one hour increments, accumulating historical records of service requests and

evaluating the number of calls received during each hour of the week (Matteson et al, 2011). In Wales, for

example, the highest value for each hour of each day in each 10 week period in the previous 50 weeks is observed

and the average of these is selected as the ‘average peak demand value’. The number of ambulances then

deployed for this hour in future weeks is based on the concept that there must be a sufficient number to cope

with such demand. In Germany however, a more complex risk-based method by Behrendt & Schmiedel (2002)

is often used to determine the maximum number of ambulances needed. They do not consider the average

demand but the more unlikely event of several emergencies happening simultaneously. This is modelled by a

Poisson distribution. The number of needed ambulances is determined in such a way that the probability of

having to serve more emergencies simultaneously than ambulances exist is below a certain threshold.

The demand for EMS has the characteristics of the essentially random occurrence of individual calls with

historically discernible seasonal patterns patterns (Vile et al, 2016) and an underlying sustained increase over

the past 20 years (Lowthian et al, 2011b). Several research papers have suggested different methods to account

for such fluctuations including linear, sinusoidal and support vector regression (Chen et al, 2015), simple moving

averages and more complex time series approaches that allow inclusion of neighbouring hours in the forecast

(Baker & Fitzpatrick, 1986, Matteson et al, 2011). Integrated solutions have also been presented that both

estimate ambulance demand and recommend deployment plans using queueing theory, simulation models and

theoretical distributions (Bell & Allen, 1969, Larson, 1974, Rajagopalan et al, 2011).

Since the late 1980’s, classical time series models such as Autoregressive Integrated Moving Average (ARIMA)

and Holt-Winters methods have been used extensively to forecast call volumes (Andrews & Cunningham, 1995,

Bianci et al, 1993, Holcomb & Sharpe, 2007) and specifically applied to ambulance demand in Channouf et al

(2007). These models however require restrictive data assumptions.

As ambulance deployment strategies at the operational level are ever increasingly becoming more flexible

and dynamic in nature, the past decade has seen the development of more responsive model-free methods,

which not only offer more accurate short-term call volume predictions, but can also integrate with location

and deployment models. In conjunction with evaluating the potential of conventional time series methods to

predict future demand levels, Vile et al (2012) have recently considered the potential of Singular Spectrum

Analysis (SSA) to produce accurate forecasts whilst adequately accounting for non-stationarities. They show

that it considerably outperforms traditional methods for long-term forecasts and offers at least comparable

forecasts for a short term planning horizon. Artificial Neural Networks (ANNs) have also been demonstrated

to be capable of producing accurate forecasts for small areas by Setzler et al (2009).
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Workload and service time forecast

Whilst a large number of models have been developed to better predict demand for EMS, the most comprehensive

mathematical models of EMS systems also take account of how response times and workload are expected to

fluctuate over time (Ingolfsson, 2013). The relationship between these components is extremely complex, but

the detailed call logs now standardly collected by most modern day EMS providers have supplied operational

researchers with a wealth of historical data to analyse and interpret, in order to better understand the effect of

behavioural and temporal issues. Response and service time forecasts are mainly important for strategic EMS

planning

Each EMS call has an associated response and service time (see Figure 1), which are important for different

reasons: the response time is often looked to as an indicator of the quality of service provided by each EMS

body and the service times determine the workload on the EMS system. The travel time is usually the largest

component of the response time (Ingolfsson, 2013) and has thus unsurprisingly been found to be one of the main

factors to influence overall system quality. Hence, by prudently distributing ambulances to bases, ambulance

planners are able to somewhat improve their performance (Takedaa et al, 2007). Most statistical analysis of

EMS travel times has focussed on either predicting travel time based on the characteristics of distinct road

types and travel conditions encountered when travelling from the dispatch location to the scene of the incident

(Harewood, 2002, Henderson & Mason, 2004), or based simply on the birds eye distance between both the two

points, scaled by correction factors (Aringhieri et al, 2007, Fujiwara et al, 1987). Beyond the standard techniques,

operational researchers have also considered modelling this component of service time using graphical analysis,

factor scaling (comparing travel time data to Google Maps travel times and distances), cluster analysis to

group demand locations and find factors, and cluster analysis to group demand locations so that a significant

distributional fit might be found to individual groups.

Fewer studies have focussed on modelling the on scene time, which might be attributable, at least in part,

to data limitations (Aboueljinane et al, 2013). Despite the significant time spent on triage and dispatch,

some researchers neglect this time in their modelling efforts. Others, such as Maxwell et al (2010), considered

deterministic preparation times depending on the initial location of vehicles. Where only partial information is

known about the service time, processing times have been modelled in an aggregated form, for example, as in

Goldberg et al (1990). More recently, Knight & Harper (2012) have studied the effect of individual components

of the ambulance service cycle using Coxian phase-type distributions. By fitting distributions to both the overall

cycle time for different classes of patient priorities, as well as to sub-cycles, they were able to identify expected

gains from adjusting specific aspects of the response process on the overall efficiency of an ambulance service.

Ultimately, the insight they offered on the benefit of reducing turnaround times pointed towards the need for

an entire systems approach given that the congestion in the hospital impacts on the ED and in turn on EMS

turnaround times.

Further work in this area could involve studying how load-dependent average service times could be incorpo-

rated into mathematical models on EMS systems. Ingolfsson (2013) has already shown that chute time appears

to decrease with load, whilst hospital time increases, but such observations have not yet been incorporated into

time-varying models of the system.

Strategies

For EMS systems in practice as well as EMS planning strategic decisions on dispatching, deployment and

relocation strategies must be made. These decisions on the strategies then influence planning problems on the

strategic and the operational levels.
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Call-handling strategies

When optimising the ambulance distribution, most research focusses on adjusting the travel time component

with a fixed or ‘known’ pre-trip delay time. However, the pre-trip delay time can greatly influence the overall

travel time. Hence by adequately managing the EMS call center, some reduction could be achieved. Typically,

incoming calls first receive complete triage before an ambulance is dispatched. Another approach could be to

dispatch an ambulance even before triage is completed. Potentially, quicker response times could be achieved

because the pre-trip delay would be reduced. On the other hand, inappropriate ambulance assignment as a

result of the incomplete triage could lead to a higher workload. It would be interesting to investigate the overall

impact on the performance. Some EMS systems differ between call takers and dispatchers, e.g., the Dutch

system as described above. Studies are missing that prove or disprove the efficiency increase when dividing the

tasks. This might also depend on the size of the dispatch center, i.e., on the call volume and the number and

type of tasks the staff at the dispatch center needs to fulfil.

Dispatching strategies

Many EMS systems demand for an assignment of the closest available ambulance for all emergencies. In others,

dispatching decisions can be made based on the severity of the emergency as well as the overall coverage of

the system. In any case, the dispatching policy influences the decision on ambulance and base locations on the

strategic level as well as ambulance relocations and the actual assignments of ambulances on the operational

level. In addition, patient transports must be assigned to ambulances, if they are served in the EMS system. It

must be decided when ambulances are assigned to the transport tasks (right before the pick-up or earlier) and

which ambulances can be assigned, if there is not a dedicated part of the fleet.

Relocation strategies

While in some countries relocations to basically every location in the region at every point in time are possible

(e.g., in the US), in other countries relocations are not wanted at all (e.g., in many German EMS regions). In

between these two rather “extreme” policies, relocations might only be allowed to a defined set of locations (e.g.,

the set of bases) or at specific points in time, for example when an ambulance becomes available again after

having finished a service. The strategy that is chosen for an EMS region can be used as input in a simulation

to determine the expected service quality and determines the set of applicable relocation approaches that can

be used in practice.

Workforce planning

For EMS planning mainly two different sets of staff exist: (1) the staff working in the ambulances (and as

emergency doctors) and (2) the staff working in the dispatching center. In smaller German regions it is preferred

that dispatchers also work at an ambulance from time to time to not loose contact to practice. In most other

countries, the two staff sets are completely disjoint and therefore, the corresponding planning problems can be

considered independently.

In general, workforce planning problems have been extensively discussed in literature. A review over existing

approaches, methods and application areas can, for example, be found in Van den Bergh et al (2013).
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Ambulance crew

While some of the general approaches might be used for fixing shifts for paramedics and assigning them to am-

bulances, several papers have already been published that explicitly consider the ambulance rostering problem.

Bradbeer et al (2000) discuss the ambulance roster problem and present three approaches that build upon each

other and are based on genetic algorithms. They assume that the number and locations of ambulances is given.

Defraeye and Van Nieuwenhuyse (2012) analyse the probability that patients wait longer than maximal accept-

able times under varying staffing levels using an extension of the Iterative Staffing Algorithm (ISA). The ISA

is a simulation-based approach to determine staffing requirements under time-varying arrivals, which targets a

stable delay probability throughout the day.

In contrast, several researchers such as Erdoğan et al (2010), McCormack & Coates (2015) and Vile et al

(2016) combine the crew rostering and ambulance location problems. In particular, Erdoğan et al (2010)

schedule ambulance crews in order to maximize the coverage throughout a planning horizon by first running a

tabu search to locate ambulances and then using the output to solve the crew rostering problem. For that they

present two integer programming models. Li & Kozan (2009) define two stages for solving the problem. First,

shift start times and the necessary number of ambulance staff to be assigned to each shift are determined using

a deterministic model. Then, an allocation model assigns all ambulance staff to shifts resulting in a schedule

for four weeks. Also Rajagopalan et al (2011) present a two-stage approach for crew rostering and ambulance

location planning. In the first stage, they solve a dynamic expected coverage model using tabu search. For the

second stage an integer programming model is presented. Jasim (2002) present a set partitioning approach to

solve the staff scheduling problem for the New Zealand EMS provider St John. In addition, a “fatigue model”

is applied to the optimal solution to predict the impact of working hours on the fatigue that a staff member

experiences during a working day.

Dispatching center

Apart from the potential response time reduction, an efficiency gain could be obtained by improving the call

center staffing. For other applications, significant research has been performed on the optimal staffing of call

centers (c.f. Koole & Mandelbaum (2002)). Research specific for EMS call centers is limited. One of the few

peer-reviewed papers by Kozan & Mesken (2005) introduces a simulation tool that can be used for what-if

scenarios to improve the staffing levels in EMS call centers. Dwars (2013) introduces a simulation tool that

contains both specialised call takers and dispatchers and generalists that can do both. The tool is designed

to find good configurations of call center crews. The main application is to investigate the potential gain of

merging call centers. On the one hand, economies of scale can lead to significant savings, whereas the loss of

region-specific knowledge can result in longer call durations and lower efficiency. Incorporating this regional

knowledge, Dwars (2013) shows that significant efficiency gains can be obtained by merging call centers. In the

Netherlands, for example, one can observe a trend of merging call centers. From the 24 call centers that where

there some years ago, only ten will remain in the upcoming years.

Despite the mentioned results, it is fair to say that the call center domain of EMS systems is not as well-

studied as other domains and contains some good areas for future research.

Ambulance planning

In this section, we describe different models that can be used for an efficient planning of emergency rescues.

First, we describe the problems that arise at a strategic and tactical level. These include models to determine
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good base locations and a good distribution of ambulances over the bases. Often, these two problems are solved

simultaneously. Most models assume a fixed capacity and try to maximize the performance with the available

resources. However, it is also interesting to consider the problem of deciding on an optimal capacity level so as

to obtain a minimum performance. Secondly, we give an overview of some models that consider problems at the

operational level. This includes, for example, dispatch rules and real-time relocation. The decisions made on

the strategic and tactical level are typically considered as input at the operational level. Finally, we highlight

some related problems that might have a significant impact on the performance of an EMS system.

Strategic and tactical level

The most important problems on the strategic and tactical level are to determine good base locations and

a good distribution of ambulances over these bases. Although the first problem is more a strategic decision

and the second more a tactical decision, these problems are often solved simultaneously. In Van Essen et al

(2013), approaches for solving the two problems simultaneously or subsequently are presented and compared.

When fixing the set of bases, we can use the same models to solve the problem of distributing the ambulances

separately. The models are typically formulated in a way to maximize the performance given a fixed set of

resources. However, with slight modifications, most of the models can also be used to determine the required

capacity to satisfy a minimum performance requirement. The vast majority of models use coverage-based

performance measures. These models maximize the fraction of calls that can be reached within a given target

response time. This is mainly due to the fact that in almost all countries, EMS providers are assessed on

these kind of measures. Nevertheless, there are models that use different objectives. For example, Dzator &

Dzator (2013) minimize the average response time by applying the p-median model (ReVelle & Swain, 1970) to

ambulance location.

Two of the first ambulance location models did not incorporate the ambulance distribution. In 1971, Toregas

et al (1971) introduced the Location Set Covering Model (LSCM) to determine the minimum required number

of bases to cover the entire region within a fixed time threshold. Later, the Maximum Coverage Location

Problem (Church & ReVelle, 1974) was introduced to maximize the coverage given a limited number of bases.

Inspired by these two models, much research was done to include the ambulance distribution in the models.

At first, it was assumed that a fixed number of ambulances was required to obtain full coverage. Examples

of models of this type are DSM (Gendreau et al, 1997), BACOP (Hogan & ReVelle, 1986), MALP (ReVelle

& Hogan, 1988) and multi-objective MALP (Harewood, 2002) . After that, the concept of marginal coverage

was introduced by Daskin (1983). Here, each additional ambulance covering some area provides some coverage

to that region. This model uses expected coverage as opposed to the all-or-nothing coverage of the previous

models. Many models were introduced that extended on Daskin’s MEXCLP by incorporating time-dependent

demand (Repede & Bernardo, 1994, Van den Berg & Aardal, 2015), multiple vehicle types (Chong et al, 2015),

stochastic response times (Ingolfsson et al, 2008, Van den Berg et al, 2015), or survival probabilities (Erkut

et al, 2008). Alternatively, Beraldi et al (2004), Beraldi & Bruni (2009), and Nickel et al (2015) use Stochastic

Programming techniques to obtain robust solutions.

As it is typically necessary to highly simplify the EMS system in order to obtain tractable solutions, opti-

mization is sometimes combined with simulation to ensure solutions that perform well in practice. Approaches

in which there is interaction between the simulation and the optimization are called simulation-optimization

approaches. Lee et al (2012) iteratively use simulation to estimate busy fractions in a static ambulance location

model. With the new busy fraction, a new solution is found for which the busy fraction is estimated by the

simulation. Mason (2013) also presents a simulation–optimization algorithm for determining improved base
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locations. Finally, in McCormack & Coates (2015) simulation is integrated in a genetic algorithm to give the

fitness of the current solution.

A more extensive overview of the literature on ambulance location models can be found in Brotcorne et al

(2003), Li et al (2011), and Basar et al (2012). Recently, Ahmadi-Javid et al (2016) presented a review of more

general health care facility location problems. In this paper, also non-emergency facilities are discussed. A

computational comparison of some of the basic ambulance location models is given by Erkut et al (2009) and

Van den Berg et al (2016).

Operational level

At the operational level of the planning, real-time decision should be made, such as which ambulance to send

to a call and how to relocate the remaining vehicles.

Real-time locations Gendreau et al (2001) were one of the first to address the real-time ambulance location

problem. The proposed model was a dynamic version of the static Double Standard Model. It incorporates the

current state of the system in finding good relocations. Whenever a redeployment decision must be made, the

adapted version of DSM is solved. A similar approach is used by Gendreau et al (2006), where MEXCLP is

solved in stead of DSM. Over the last ten years, many models were introduced that were specifically designed

to capture the dynamics of an EMS system. Zhang et al (2008) solve the real-time relocation problem for a

small number of ambulances by Dynamic Programming. For larger instances, their model suffers from the curse

of dimensionality. Bjarnason et al (2009) evaluate policies using a simulation tool. Based on the results of the

simulation, an optimization tool is used to find better policies. As opposed to most models that significantly

simplify the system, Maxwell et al (2010) include as many details of the real system as possible and apply

approximate dynamic programming (ADP) to find good relocation policies. A simulation model is used to

assess the performance of a given EMS allocation policy. ADP is further used by Schmid (2012) to find dispatch

and relocation policies in case travel times and call rates fluctuate over time. However, redeployment decision

are limited to the moment an ambulance becomes available after finishing a call. Yue et al (2012) embed a

simulation in a greedy algorithm to obtain the objective value of solutions. In the optimization, the simulation is

called every time the value of a solution is requested. Alanis et al (2013) pose a two-dimensional Markov chain to

evaluate the system given a compliance table. A simulation-optimization framework for allocating ambulances

to bases and relocating them throughout the day was proposed by Zhen et al (2014). In the simulation a

stochastic environment is implemented, in which the arrival time of requests, travel time and on scene time

are uncertain. For the optimization a genetic algorithm is used. Jagtenberg et al (2015) introduce a heuristic

in which an ambulance is sent to the base where it provides the highest marginal coverage according to the

MEXCLP objective function.

Dispatching Besides redeployment decisions, real-time decisions must be made on which ambulance to dis-

patch to a call. Even though Carter et al (1972) has already shown that it is not always optimal to dispatch the

closest idle ambulance, it is still by far the most common dispatch rule (as highlighted in our overviews of the

UK, German and Dutch systems). This assumes knowledge about the locations of the available ambulances.

As observed by Dean (2008) and mentioned in the description of the German system, this information is not

always present. One notable exception of the closest idle dispatch rule is Andersson & Värbrand (2007), which

adopt alternative dispatch rules for low priority calls. However, they do not try to find optimal dispatch rules.

Schmid (2012) uses approximate dynamic programming to find dispatch policies, and find that deviating from

the closest idle dispatch rule for non life-threatening calls can improve the overall performance. Ibri et al (2012)
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were one of the first to consider the coverage while dispatching ambulances. They propose a decentralized

distributed solution approach as a multi-agent system. Lee (2011, 2012a,b, 2013, 2014) studies the dispatching

for the U.S. EMS system where only part of the patients are actually transported and ambulances therefore

often drive from one demand location to the next. First, the preparedness for future demand is considered when

deciding which ambulance to assign to an emergency (Lee, 2011). As a next step, the concept of centrality is

introduced (Lee, 2012a,b, 2013). The centrality is determined for each demand node based on the distances

and distribution of the current calls. For the dispatching closeness and centrality are combined. To test the

approaches generated instances based on a 5 by 5 demand grid with 25 nodes are used. In another extension,

not only idle but also busy ambulances are included that reduces the response time again for the generated

test instance (Lee, 2014). Bandara et al (2014) include the severity of calls into the dispatching decision with

the aim of increasing the survival probability of the patient. The authors use a function proposed by Larsen

et al (1993) to determine the survival probability. They propose a heuristic to apply the dispatching strategy

to large-scale EMS systems. Sudtachat et al (2014) also study multiple priorities, but additionally different

types of ambulances that can be assigned. The authors specifically consider three priorities and two types of

vehicles, ALS and BLS, and assume that it can also happen that one ambulance of both types is assigned to one

call. The objective is to maximize the overall expected survival probability of patients with a “life-threatening”

emergency. Haghani et al (2003) use a simulation to compare different dispatching strategies. They focus on

the position of the call in the waiting queue in case all ambulances are busy or no ambulance can reach the scene

in the response time. In general, the closest available ambulance is assigned. Also Van Buuren et al (2012)

present a simulation tool for EMS dispatchers in the Netherlands to evaluate different dispatch strategies. A

review of dynamic ambulance relocation models from the perspective of dispatch policies is given by Lim et al

(2011). The authors then present an adapted version of the MCLP for the ambulance location problem and

assign ambulances to calls in a simulation study. In the simulation they dispatch ambulances considering the

priority and the closeness, as these they identified these two policies as the most common. A Markov Decision

Process is proposed by McLay & Mayorga (2013b). The model determines how to optimally dispatch ambu-

lances to patients in order to maximize the the expected coverage of high-risk patients. The optimal policies are

tested with real-world data. The authors show that it is not always best for the system to dispatch the closest

ambulance to a patient. The authors extend the model in a second paper and consider the impact of equity

constraints by using linear programming models and algorithms (McLay & Mayorga, 2013a) and four potential

equity measures, two for patient and two for server equity. Zarkeshzadeh et al (2016) propose a hybrid method

with a linear combined metric that is based on network centrality measures, the nearest neighbor method and

the first-in first-out (FIFO) policy. Additional parameters such as the operating environment, rate of incoming

emergency calls, available resources, hospitalization probability of the patients as well as distances and locations

of units are also considered in the approach. A simulation is used to test the proposed metric.

Other services

Besides the problems that arise in any EMS system, there some aspects of EMS systems that are not always

present. Depending on the system, these can have a significant impact on the performance. We discuss three

here: emergency doctors, helicopters, and hospital drop-offs.

Emergency doctors In Franco-German EMS systems, determining the number and locations of emergency

doctors might be of interest. This is of particular interest in Baden-Württemberg as they also have defined a

response time target of 15 minutes in 95% of the cases for emergency doctors. Therefore, their locations are

crucial. To the best of our knowledge, there are no publications on explicitly locating emergency doctors using
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OR to be found in the literature. A main reason is probably that emergency doctors usually work in hospitals

or practices while being on duty and these locations cannot be changed. In addition, it is not possible to simply

assign further emergency doctors as a specific training is a prerequisite for working as an emergency doctor that

is time consuming as well as expensive. Nevertheless, the assignment of shifts is an important tasks, especially

if in total more doctors and locations are available to choose from than necessary for each shift. This can result

in a combination of a simple maximum coverage problem to make sure that the considered region is covered (as

good as possible) with a shift scheduling problem. If, for example, there are only two emergency doctors in an

area, these two should not have overlapping duties.

Helicopters In many countries, helicopters are used in the most severe cases. Typically, the helicopter is not

the first responder, but is used to provide more specialized medical assistance. This is mainly due to the high

start-up times of helicopters. A land ambulance is used for the first response and if necessary, a specialized

doctor arrives by helicopter. The helicopter can then also be used for transport to a hospital or trauma center.

In many cases, the patient is transported by the land ambulance to a suitable place for the helicopter to land.

One notable exception is the region of Ontario, Canada, where aircrafts and helicopters are also used for non-

urgent patient transports. For this region, Carnes et al (2013) develop a model to better schedule the aircrafts

that are used for these transports. For the case where helicopters are only used for trauma patients, Erdemir

et al (2010) introduce a MCLP-based model for the simultaneous optimization of land and air ambulances.

Here, a patient can be served by a land ambulance, a helicopter or both. Cho et al (2014) optimize the location

of the helicopters as well as the location of the trauma centers. The trauma centers can only be located at

specific existing hospitals. Furuta & Tanaka (2014) consider the case where land transport is also necessary and

the ambulance and helicopter meet at a rendez-vous point. The goal is to reduce the access time for specialized

care compared to the case where only land ambulances are used. Given the land ambulance distribution, the

best location for helicopters and rendez-vous points is determined.

Drop-off at hospitals It is in the interest of all ambulance trusts, patients and health care workers for a

patient to experience a swift handover of care, since a long handover not only wastes valuable resources but can

also be harmful to patients, whose condition might deteriorate whilst waiting in the ambulance bay. This is,

however, not always possible and conflicting targets for the ambulance service and the emergency departments

are not always conducive small handover times. In order to promote swift handovers, some European countries

issue target times for ambulance personnel to transfer patient care to the ED (for example, this target is fifteen

minutes in the UK). Some countries additionally issue ‘turnaround’ targets, which are typically a few minutes

longer since these also incorporate time for the crew to fully replenish the ambulance so it is ready to attend

another emergency call. Whilst the exact formulation of the targets varies from country to country, their aims

are consistent, in as much to reduce costs, and improve both patient outcomes and the equitable use of resources

(of vehicles and crews).

In the majority of European countries, it seams that the turnaround targets are attained at a reasonable

level and therefore, patient handover is currently not a major area of concern. However, it is a notorious

problem in the UK, as well as for some areas of the USA and Canada. In fact, the number of ‘lost’ ambulance

hours due to long handovers has been estimated to have cost the UK NHS millions of pounds a year. In Wales

alone, there has been a five-fold increase in ‘lost’ ambulance hours in the last few years (from around 8,000 in

2008 to 40,000 in 2014); hence it is not surprising that this has been closely monitored by the media (Clarke,

2015, Hughes, 2009, Jones, 2011). Not only is this money wasted that could be better used within the service,

distressed patients spend long periods of time waiting for transfer of care, resulting in potential deterioration
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in their condition and effectiveness of subsequent treatment. Furthermore, whilst waiting to handover patients,

the crew’s vehicles are blocked, which results in decreasing coverage (Lowthian et al, 2011a) and puts lives at

risk.

The effect of reducing turnaround time on performance has been investigated in several simulation studies,

which have in the main focussed on its impact on response time as this is the common measure for EMS systems

and comparable across the countries (Knight et al, 2012). However, since some ambulance services are moving

to clinical outcome based measures (e.g. the Welsh Ambulance Service Trust, WAST), it is also of interest to

see if survival between different scenarios alters. Investigations into the effect of reducing the turnaround time

have been undertaken in several studies; notably with Knight & Harper (2012) showing that if turnaround times

were reduced to the extent that the government targets were met in Wales, this would be equivalent to 15%

extra capacity on the ground.

As mentioned before, patient handover is also a critical issue in Canada. Therefore, Carter et al (2015)

propose the introduction of offload zones in hospitals to shorten the drop-off time while also controlling the

workload in the ED. They describe it as an additional area next to the ED where a nurse looks after patients

that were taken to hospital by an ambulance.

Patient transports

When patients need to be transported to, from or between hospitals this is often organized by the EMS provider,

sometimes even regulated by (EMS) law, as, for example, in Germany. If medical attention is needed during the

transportation phase, an ambulance is sent. In Germany, this is called a qualified patient transport. Sometimes,

intensive care is needed which result in the use of specially equipped vehicles and trained personnel. If medical

attention is not necessary, in Germany and other countries also taxis or private transport companies can fulfill

the tasks. This is then called unqualified patient transport. Usually, taxis as well as private transport companies

organize themselves. Therefore, they are excluded in this section. Nevertheless, they also have to determine

routes and schedule their transports. Therefore, similar methods to those described in this section can be used

to tackle their planning problems.

A transport task involves picking up a patient at one location and dropping them off at a second location.

Often, for one of the two actions a time window is given. Depending on the regulations in the country, these

time windows are hard and must be fulfilled or soft and might be violated. In the latter case, minimizing the

violations is often (part of) the objective function. In general, a distinct set of ambulances is reserved to fulfil

the transport tasks. In that case, there are mainly two decisions to be made: (1) tasks must be assigned to the

ambulances and (2) the routes for the ambulances must be constructed.

If not all patients can be served by the set of ambulances, some tasks need to be assigned to ALS ambulances.

This results in higher costs and coverage reduction and should therefore be prevented, if possible. The underlying

problem can be expressed with a dial-a-ride (DARP) formulation.

The DARP itself is already quite well studied, see, for example, Cordeau & Laporte (2007) and Parragh

(2009). There are only a few publications that study models and approaches for planning the patient transport

problem using OR. Ritzinger & Puchinger (2012), Schilde et al (2011) and Parragh et al (2009) study patient

transports in the Austrian EMS system, focusing on the two relief organizations Arbeiter Samariter Bund (ASB)

in Vienna and the Austrian Red Cross. They provide different DARP formulation and solution approaches.

Parragh et al (2009) include two different types of vehicles having different capacities for transport tasks and

they additionally assign drivers to vehicles. In the system presented by Schilde et al (2011), only transports

between patients’ home locations and hospitals are considered with patients, instead of hospitals and doctors,
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ordering the transports. Ritzinger & Puchinger (2012) assume about 1,000 transports per day. Therefore, an

approach is needed that is explicitly fast. Unfortunately, this is usually going along with some compromises on

solution quality.

Of course, solving a DARP formulation to optimality can only be applied in practice if all patient transport

tasks are known in advance, e.g., the night before, and if the problem size can be solved during the time

available. If this is not the case, heuristics might be more reasonable for a use in practice. If none or only

part of the tasks are known in advance and the rest becomes known throughout the day, scheduling the tasks

resembles an online problem. For this case, Kergosien et al (2011) introduce a Tabu Search heuristic which is

called every time a new call arrives.

Kergosien et al (2015) have proposed a generic discrete event simulation-based analysis model that simulta-

neously decides how to schedule patient transports between their homes and other medical facilities as well as

how to optimally serve emergency requests.

Especially in Germany, having a coordination platform for planning the routes can be expected to be highly

beneficial for the EMS system. A dispatcher would get decision support for assigning the tasks while the tool

determines possible solutions in real-time if needed. The outline of such a coordination platform for the use in

Germany is described in Reuter-Oppermann et al (2015), for example.

Summarising table

The following Table 2 summarises the literature presented in this paper and matches it to the taxonomy

presented in Figure 4.
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Aboueljinane et al (2014) x x x x x

Alanis et al (2013) x x

Andersson & Värbrand (2007) x x

Aringhieri et al (2007) x x

Aringhieri et al (2013) x x

Baker & Fitzpatrick (1986) x x

Bandara et al (2014) x

Behrendt & Schmiedel (2002) x x x x

Bell & Allen (1969) x x x x

Beraldi et al (2004) x x

Beraldi & Bruni (2009) x x

Bjarnason et al (2009) x

Bradbeer et al (2000) x x x x

Carter et al (1972) x

Channouf et al (2007) x x

Chen et al (2015) x x

Cho et al (2014) x

Chong et al (2015) x x

Church & ReVelle (1974) x x x
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Daskin (1983) x x x

De La Mota et al (2015) x

Dean (2008) x

Dwars (2013) x x

Dzator & Dzator (2013) x x x

Erdemir et al (2010) x

Erdoğan et al (2010) x x x x x x x

Erkut et al (2008) x x x

Fujiwara et al (1987) x

Furuta & Tanaka (2014) x

Gendreau et al (1997) x x x

Gendreau et al (2001) x

Gendreau et al (2006) x

Haghani et al (2003) x

Harewood (2002) x x

Henderson & Mason (2004) x x x

Hogan & ReVelle (1986) x x

Ibri et al (2012) x x

Ingolfsson (2013) x x x

Ingolfsson et al (2008) x

Jagtenberg et al (2015) x

Jasim (2002) x x x x

Kergosien et al (2011) x

Kergosien et al (2015) x x

Knight et al (2012) x

Kozan & Mesken (2005) x x

Larson (1974) x x x x

Lee (2011) x

Lee (2012b) x

Lee (2012a) x

Lee (2013) x

Lee (2014) x

Lee et al (2012) x

Li & Kozan (2009) x x x x

Lim et al (2011) x x x

Lowthian et al (2011b) x x

Mason (2013) x

Matteson et al (2011) x x

Maxwell et al (2010) x

McCormack & Coates (2015) x x

McLay & Mayorga (2013b) x

McLay & Mayorga (2013a) x

Nickel et al (2015) x x x

Parragh et al (2009) x

Rajagopalan et al (2011) x x x x x x x x x x x
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Repede & Bernardo (1994) x x x

Reuter-Oppermann et al (2015) x

ReVelle & Hogan (1988) x x x

ReVelle & Swain (1970) x

Ritzinger & Puchinger (2012) x

Schilde et al (2011) x

Schmid (2012) x x x

Setzler et al (2009) x x x

Sudtachat et al (2014) x

Takeda et al (2007) x x x

Toregas et al (1971) x x

Van Buuren et al (2012) x

Van den Berg & Aardal (2015) x x x

Van den Berg et al (2015) x x x

Van Essen et al (2013) x x x

Vile et al (2016) x x

Vile et al (2012) x x

Yue et al (2012) x

Carter et al (1972) x

Zarkeshzadeh et al (2016) x

Zhen et al (2014) x

Reviews

Ahmadi-Javid et al (2016) x x

Aringhieri et al (2017) x x x x x x x x x x

Basar et al (2012) x x

Brotcorne et al (2003) x x x x

Li et al (2011) x x

Table 2: Literature overview

Conclusions and recommendations for further research

In this paper, we have overviewed several logistical problems arising for EMS providers. Although demand,

response time and workload are often considered separately in the literature, we have highlighted the high

degree of interconnection between each of these components. Consequently solving only one problem at a time

might not be the best option. Thus, we have advocated papers that have addressed these issues simultaneously.

At the very least, hierarchical planning with feedback loops is advantageous although simultaneous planning

is preferable. Until recently, most papers have additionally focussed on one particular EMS provider but over

the last decade there has been an increase in the emergence of generic models, acclaimed as straightforward to

adapt to country specifics. In detailing a “typical” EMS system, we hope that our review will support further

research of a generic nature and hence minimise any repetition of research works.
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For the use of planning approaches in practice, a good forecast is important. Incorporating the resulting

uncertainty is still a research focus when determining the locations of ambulances and bases. In the future,

models that also incorporate the impact of borders between neighbouring regions or even countries will be of

interest.

The growing number of complex data sources, together with the ever increasing availability of data mining

tools, present a number of directions for future EMS studies. For example, in line with the weakening in

the perceived importance of hard response time targets when evaluating EMS quality, future studies might

treat the coverage requirement as a goal constraint while assessing the impact of changing resource team’s

positions on clinical based outcome measures. Furthermore, the call centre is a fertile domain for future

research, as is the study of load-dependent service times. Finally, it would be interesting to compare the

performance of hand generated or commercially developed deployment plans against those generated by complex

mathematical models. Since most commercially available software lacks the capability to efficiently combine

demand forecasting, deployment and crew scheduling algorithms, it would be interesting and useful in future

research to develop integrated decision support tools necessary for practice that aid the dispatcher to make

better or faster decisions by offering them different methods and algorithms to choose from.
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